Types

Binding Approach by Exposing C++ Class

The compas_shapeop extension uses nanobind to expose C++ classes and methods to Python. The binding approach in compas_shapeop has two main components:

  1. The C++ SolverWrapper class which wraps the ShapeOp C++ library and provides methods for Python

  2. The Python Solver class which imports and provides a user-friendly interface to the C++ functionality

Memory Management with std::unique_ptr

The SolverWrapper class uses std::unique_ptr to manage the lifetime of the ShapeOp::Solver instance:

class SolverWrapper {
private:
    std::unique_ptr<ShapeOp::Solver> solver;

    // Helper method to check if solver is valid
    bool is_valid() const {
        return solver != nullptr;
    }

public:
    SolverWrapper() : solver(std::make_unique<ShapeOp::Solver>()) {
        if (!solver) {
            throw std::runtime_error("Failed to create ShapeOp solver");
        }
    }

    ~SolverWrapper() {
        // The unique_ptr will automatically release the solver
    }
    // ...
};

There are several important reasons for using std::unique_ptr here:

  1. Automatic Memory Management: The unique_ptr automatically deallocates the solver when the SolverWrapper instance is destroyed, preventing memory leaks

  2. Ownership Semantics: The unique_ptr indicates that the SolverWrapper has exclusive ownership of the ShapeOp::Solver instance

  3. Exception Safety: If an exception occurs during construction or operation, the solver will still be properly cleaned up

  4. Explicit Lifetime Management: The solver’s lifetime is explicitly tied to the SolverWrapper instance

  5. Python Binding Compatibility: This approach works well with nanobind’s memory management system, ensuring proper cleanup when Python objects are garbage collected

Using a raw pointer or a direct class member would require manual memory management or additional copying operations that could affect performance. With unique_ptr, we get safe, efficient memory management with clear ownership semantics.

Class Binding

The C++ SolverWrapper class is bound to Python in src/shapeop.cpp using nanobind:

NB_MODULE(_shapeop, m) {
    // Give a clear docstring about this module
    m.doc() = "ShapeOp dynamic solver binding";

    // Define the solver class with a unique name
    nb::class_<SolverWrapper>(m, "SolverWrapper")
        .def(nb::init<>())
        .def("set_points", &SolverWrapper::set_points)
        .def("get_points_ref", &SolverWrapper::get_points_ref)
        .def("add_closeness_constraint", &SolverWrapper::add_closeness_constraint)
        // ... other methods
        .def("initialize", &SolverWrapper::initialize)
        .def("solve", &SolverWrapper::solve);
}

The nb::class_ template creates a Python binding for the C++ SolverWrapper class, and the .def() calls expose individual methods.

Method Binding

Methods are bound with appropriate type signatures to handle conversions between C++ and Python types:

// Example method binding with Python list input
int add_closeness_constraint(nb::list indices, float weight = 1.0) {
    if (!is_valid()) {
        throw std::runtime_error("Invalid solver");
    }

    // Convert Python list to std::vector<int>
    std::vector<int> ids;
    for (size_t i = 0; i < len(indices); i++) {
        int idx = nb::cast<int>(indices[i]);
        ids.push_back(idx);
    }

    // Call the ShapeOp method with the converted vector
    auto constraint = ShapeOp::Constraint::shapeConstraintFactory(
        "Closeness", ids, weight
    );
    return solver->addConstraint(constraint);
}

Each method follows this pattern: 1. Accept Python-friendly types as input 2. Convert inputs to C++ types using nanobind’s casting functions 3. Call the underlying ShapeOp C++ methods 4. Return results as Python-friendly types

Zero-Copy Memory Sharing

One of the most important aspects of the binding is the zero-copy memory sharing between Eigen matrices and NumPy arrays:

// Direct access to ShapeOp's internal points matrix with zero-copy
Eigen::Ref<Eigen::MatrixXd> get_points_ref() {
    if (!is_valid()) {
        throw std::runtime_error("Invalid solver");
    }
    // Direct access to the solver's points matrix
    return solver->points_;
}

This method returns an Eigen::Ref to the internal points matrix, which nanobind automatically converts to a NumPy array view without copying the data. This allows Python code to directly read and write to the C++ memory. In python we access the coordinates from the solver.init() method. The return value is a numpy array that is a view of the C++ memory. This value is updated every time you call solver.solve(n) where n is the number of iterations.

Type Conversion

Matching C++/Python types often takes the most of the time and requires careful attention. When implementing C++/Python bindings, follow these key patterns from the existing files or implement your own. If there are specific types you want to implement, review the nanobind tests . Ask questions in discussion section for nanobind typing or follow previous issues. Current implementation provides examples for the following types:

  • C++:
    • Use Eigen::Ref for matrix parameters, e.g. to transfer mesh vertex coordinates.

    • Return complex data as std::tuple<type, ...> types.

    • Use std::vector<type> for list copies otherwise use const std::vector<type> &.

    • Use Eigen Matrix types in vectors const std::vector<Eigen::Matrix<type, ...>> & instead of reference type const std::vector<Eigen::Ref<...>> &.

    • On Windows, ensure NOMINMAX is defined before including any Windows headers to prevent max/min macro conflicts.

  • Python:
    • Use float64 for vertices and int32 for faces in numpy arrays

    • Enforce row-major (C-contiguous) order for matrices

    • Use libigl’s matrix types (e.g., Eigen::MatrixXd, Eigen::MatrixXi)

Type Conversion Patterns

When implementing C++/Python bindings, follow these established patterns:

Matrix Operations

Use Eigen::Ref for efficient matrix passing:

void my_function(const Eigen::Ref<const Eigen::MatrixXd>& vertices,
                const Eigen::Ref<const Eigen::MatrixXi>& faces);

Return complex mesh data as tuples:

return std::tuple<Eigen::MatrixXd, Eigen::MatrixXi> my_function();

Enforce proper numpy array types using float64 and int32 in C-contiguous order:

import numpy as np
from compas_libigl._nanobind import my_submodule

# Convert mesh vertices and faces to proper numpy arrays
vertices = np.asarray(mesh.vertices, dtype=np.float64)
faces = np.asarray(mesh.faces, dtype=np.int32)

# Pass to C++ function
V, F = my_submodule.my_function(vertices, faces)

Vector Types

For list data, choose between std::vector for value copies, const std::vector& for references, and std::vector<Eigen::Matrix<type, ...>> for matrix vectors.

Bind vector types explicitly:

// In module initialization
nb::bind_vector<std::vector<double>>(m, "VectorDouble");

Access in Python:

# Get vector result
vector_result = my_function()
# Access elements by index
x, y, z = vector_result[0], vector_result[1], vector_result[2]

Type Conversion Best Practices

When implementing new functionality:

  • Matrix Operations:

    // GOOD: Use Eigen::Ref for matrix parameters
    void my_function(Eigen::Ref<const Eigen::MatrixXd> vertices);
    
    // BAD: Don't use raw matrices
    void my_function(Eigen::MatrixXd vertices);
    
  • Return Types:

    // GOOD: Return complex data as tuples
    std::tuple<Eigen::MatrixXd, Eigen::MatrixXi> my_mesh_operation();
    
    // BAD: Don't use output parameters
    void my_mesh_operation(Eigen::MatrixXd& out_vertices);
    
  • Vector Handling:

    // GOOD: Use const references for input vectors
    void my_function(const std::vector<double>& input);
    
    // GOOD: Return vectors by value
    std::vector<double> MyOperation();
    
    // BAD: Don't use non-const references
    void my_function(std::vector<double>& input);
    
  • Matrix Vectors:

    // GOOD: Use Matrix types in vectors
    std::vector<Eigen::Matrix<double, 3, 1>> points;
    
    // BAD: Don't use Ref types in vectors
    std::vector<Eigen::Ref<Eigen::Vector3d>> points;
    
  • Python Integration:

    # GOOD: Enforce proper types
    vertices = np.array(points, dtype=np.float64)
    faces = np.array(indices, dtype=np.int32)
    
    # BAD: Don't rely on automatic conversion
    vertices = points  # type not enforced
    faces = indices   # type not enforced
    
  • Windows-Specific:

    // GOOD: Define NOMINMAX before Windows headers
    #ifdef _WIN32
    #define NOMINMAX
    #endif
    #include <windows.h>
    
    // BAD: Don't use Windows headers without NOMINMAX
    #include <windows.h>  # May cause conflicts with std::min/max