mesh_laplacian_matrix
- compas.datastructures.mesh_laplacian_matrix(mesh, rtype='csr')[source]
Construct a Laplacian matrix with uniform weights from a mesh data structure.
- Parameters
mesh (compas.datastructures.Mesh) – Instance of mesh.
rtype ({‘array’, ‘csc’, ‘csr’, ‘coo’, ‘list’}, optional) – Format of the result. Default is
"csr"
.
- Returns
array-like – The Laplacian matrix.
Notes
The \(n \times n\) uniform Laplacian matrix \(\mathbf{L}\) of a mesh with vertices \(\mathbf{V}\) and edges \(\mathbf{E}\) is defined as follows 1
\[\begin{split}\mathbf{L}_{ij} = \begin{cases} -1 & i = j \\ \frac{1}{deg(i)} & (i, j) \in \mathbf{E} \\ 0 & \text{otherwise} \end{cases}\end{split}\]with \(deg(i)\) the degree of vertex \(i\).
Therefore, the uniform Laplacian of a vertex \(\mathbf{v}_{i}\) points to the centroid of its neighboring vertices.
Examples
>>> from compas.datastructures import Mesh >>> mesh = Mesh.from_polyhedron(6) >>> L = mesh_laplacian_matrix(mesh, rtype='array') >>> type(L) <class 'numpy.ndarray'>
>>> L = mesh_face_matrix(mesh, rtype='csr') >>> type(L) <class 'scipy.sparse.csr.csr_matrix'>
>>> xyz = asarray(mesh.vertices_attributes('xyz')) >>> L = mesh_laplacian_matrix(mesh) >>> d = L.dot(xyz)
References
- 1
Nealen A., Igarashi T., Sorkine O. and Alexa M. Laplacian Mesh Optimization.